
I AlI 560 AN AFFINE INVARIANT BIVARIATE VERSION OF THE SIGN TEST 1/1
1 (U) PENNSYLVANIA STATE UNIV UNIVERSITY PARK DEPT OF
I STATISTICS 9 N BROWN ET AL. JUN 07 TR-72

INcSIFI IEDNSSSI9--04 -- S4F/O 12/3NL

II..'.'momomol



-w-0l. I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUMA OF STANIMRO-1963-A

,': " " 4 -" "ql .,,'IB" .... .. ..IW' ,i'L~ , ' l" , , p " :saw , -a' D" -- . _ .



o The Pennsylvania State University

Department of Statistics
University Park, Pennsylvania

Q

I TECHN4ICAL~ REPORTS AND PREPRINTS
Number 72: June 1987

AN AFFINE INVARIANT BIVARIATE VERSION OF
THE SIGN TEST

B. M. Brown

University of Tasmania

and

1, Thomas P. llettmansperger*
17 1 The Pennsylvania State University

:E2.l 7Prani4 JUN 1 81987

..............
. .2 4

Scano

87t1 012
Pittburg



DEPARTHMU OF STATISTICS

The Pennsylvania State University
University Park, PA 16802 U.S.A.

TECHNICAL REPORTS AND PREPRINTS

Number 72: June 1987

AN AFFINE INVARIANT BIVARIATE VERSION OF
THE SIGN TEST

B. M. Brown
University of Tasmania

and

Thomas P. Hettmansperger*
The Pennsylvania State University

DT1C
9t;LECTE

JUN 18 0971

DD

*The work of this author was partially supported by ONR Contract N00014-80-C0741.

DISTRrhu'TON STATEMENT A
Approved for public release;

Distribution Unlimited



1

9Summary
The geeralized median of H. Oja yields a notion of bivariate

quantile and in turn, an affine invariant bivariate analogue of the

sign test: Its properties include a simple null covariance formula.

facilitating a permutation or sign change test in the case of

bivariate symmetry. normal efficiency coinciding with that of the Oja

median, and bounded influence, hence strong robustness.

Key words: affine invariance, bivariate quantile, bivariate symmetry,

model,. generalized median, influence function, permutation test,

normal efficiency, robustness, spatial median.
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1. IrrrUCrION

The task of finding affine-iwariant bivariate procedures which

are analogues of univartate rank methods is not straightforward; see

Bmrnett (1976) and the accompanying discussion for some of the

difficulties. Recently, however Brown and Hettmnsperger (1987)

derived affine invariant bivariate analogues of both Wilcoxon rank-sum

and signed rank tests, in bivariate two-sample and one-sample

symetric problems. This is done by combining the bivariate median

of Oja (1963) with a linear-model approach of Jaeckel (1972). The

Oja median minimizes an objective function which is the sum of areas

of certain triangles and the gradients of this function yield a notion

of bivariate quantile. The proposed tests are genuine Wilcoxon

analogues through involving bivariate "quantile" rather than

univariate rank. *For tests in one and two-my layouts analogous to

the Kruskal-Wallis and Friedman tests see Brown and Hettmansperger

(1966).

In addition permutation tests are available through conventional

arguments of sign change in the one-sample and permutation in the

two-sample problem. Null covariance matrices have simple and easily

computable forms, yielding convenient large sample normal or

chi-squared approximations.

The gradient of the Oja objective function is just the bivariate

quantile of the tested parameter vector, and when used as a test

statistic, hereafter called the OJa stg test (OS test), should

constitute a univartate sign test analogue. However. a sign change

argument cannot be applied directly to the OS test to find its
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cmditiomal covariance matrix. Hence, at first sight, it appears

that no convenient large sample test is available.

The present paper focuses an the one-sample case of bivartate

symtry. and does two things.

(i) It is shown that the OS test can be re-written in a form

which does show it to be a sign-test analogue. At the same

time. its null covariance matrix reduces to a simple and

easily computable form. and large-sample approximations are

available.

(1i) The test efficiency for normal sampling is derived, and

shown to coincide with the normal estimation-efficiency of

the Oja median (Oja and Niini ma, 1985). It is also

possible to calculate a bivariate version of the influence

function, and the resulting form is bounded, as is the case

for the univartate sign test, and shows the 08 test to be of

high robustness.

Sections 2 and 3,4 contain (i) and (ii) respectively.

2. FORMULATION

Some material from Brown and Hettmansperger (1987) is now

sumarized briefly. Let x1 ... xn,0 be 2xl vectors with {xi}

independent and with distribution symmetric about 00. The Oja

objective function is

T(G) = A(xi.x.9)

i<j

where A(a,b,c) is the area of a triangle whose vertices are abc.

The Oja generalized median 0 is the choice of 0 to minimize T. The

qumntile of 8 is the vector whose components are derivatives of T with

respect to components of 8; it is
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Q(9) I I U(Xe-xj; 6) (1)

I(J

where the "repulsion vector" u(xj.x j; B) bas magnitude Ix 1-x I and

direction perpendicular to and amy from the chord (xtx J) towards 9.

A bivariate sign test analogue uses Q(90) to test HO: 0 a 00; in the

univariate case the sign tost statistic is exactly the centered

quantile. The null hypothesis is rejected when Q(O0) is far from the

zero vector. as measured by a quadratic form in Q(00).

In what follows, take e0 a 0 without loss of generality and let

uij = u(xiOx1 ; 0). v j a u(xi,-x ; 0). The quantile Q as expressed

in (1) is not an obvious sign-test analogue.

But write uiJ ! ((ul5 + vi) + (ulJ -vl 1 ). Some simple

geometry shows that

ui1j + vij u(xj, -x; -xi)

uij vii a u(xi,-xi: -XJ).

Substituting in (1) gives

Q(O). ux5 .-x5; -xi) (2)

14 ~i (3)

where

Qi u(xJ.-x ; -xi).

(j,'i)

An alternative expression for Q coes also from (2). Note that

for fixed xj, all u(xJ,-x1; -x) are perpendicular to (-xJ.x1 ) with

magnitude 21x 1, and direction determined by which side of the chord

(-xj, x) the point -xi falls. Thus, lot the extended chord (-xj,xJ)

- 11,MI11Wwf ~ m w



divide the plan Into half-planes P+.P-; let &I be the vector x

rotated counter-clockwis. through Ir. so that u(xj J. -x;- 1

for all 1. and lot P+ be the half plane Into which a j points. Let

r,, 9 1 be the imhers of (-x, 1. 10i J) G P,.P respectively. Then

summin first over I In (2) yields

Q(O) E n a~ (4)

where n = r -s

The represetation (4) my provide the beat wany to calculate Q.

but the easiest derivation and computation of the covariance matrix of

Q comes from (3). The analogue to the sign test Is also best seen

from (3). since each QIin some sense measures the position ofx

relative to the rest of the symetrized sample.

Under the assumption of bivariate syme try (xi) Is a realization

of {s Ixi) where (s,) are Independent random variables each equalling

f Iwit pobailtie 2 Clearly Q I depends on all (sj only

through a V Therefore, conditional on the collection (A xj)

Q Ia Qi(xi) and Qi(six,) asiQi(xi). and (3) is a sun of independent

random variables with vector coefficients. Thus E(Q) = 0 and the

null covariance matrix of Q(O) is

C QQT (5)

A permutation or "sign-change" test against a general alternative

my be carried out as follows. Let

-4 1 1

Generate all 2P possible values for (s1) and hence for Q;refer the

observed value of QTC Q to the population of 2P~ values of QTClQ. and

calculate a significiance level accordingly.
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If n is large, this exact test can be modifled to a Nonte Carlo

test where the {s) are generated at random. Alternatively, a large

sample approximation Is available. Conditional on (Qi1 . each Qs Is

the sum of independent random vectors and approximtely normal for

large n. with covariance matrix C. Thus the approximate null

distribution to which QT C- 1Q should be referred is X2I.

3. EFFICIECY

Tests of H0 : e , 00 are based on Q(00) - ,J u(xi'x; Go).

Again without loss of generality now take 00 0 0. The null
I I QiQiT;se 5.Teatl

covariance matrix of Q(O) is C = 1"' see (5). The actual

test statistic is QT(O)C-1Q(O). Let B =E(C); the U-statistic-like

structure of C shows that n-3 (C-B) converges almost surely to zero as

n -* 0, as long as (x) are drawn from an integrable bivariate

distribution. The asymptotic behaviours of QT(O)C-1Q(O) and

T -1
Q (o)B Q(O) therefore coincide, and in assessing efficiency via a

sequence of alternatives within O(n - 1/2) of the null. it is easy to

show that the asymptotic distribution of QTB-1Q is noncentral )( with

noncentral ity parameter

TDTB - 1D

where 0 = n-1 /2 , a = Eo(Q(O)) and D is the matrix of derivatives of a

with respect to components of 0. Thus (see Bickel. 1965) the Pitmn

efficacy of the 06 test appears to depend on the direction of the

alternative, 6. However, it will turn out that DTB-D is

proportional to an orthogonal matrix (see Propositions 1 and 2), so

the noncentrality parameter in fact does not depend on the direction

of P. Taking P to be a unit vector, a large sample efficiency factor

S-. I
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for the test is just

*ipTDTB-DP. (6)

which will equal the comon elgenvalue of DTB-D.

Now consider normal efficiency of the OS test relative to the

least squares t-test. Both OS and t- test are a flne Invariant, so

{xI) my be assumed independent N(O,12). the bivartate circular normal

distribution.

It Is easy to verify that for least squares D = 12 , B = n-1I2 .

and hence that eLS = n.

For the OS test, the calculation of eos is broken into two parts,

first the calculation of aD and second the calculation of B.

PROPOSITIONI 1. D= . w I2

Prg2[. In this proof the dtrectton of a line Is taken to be an angle

7, or "+v; that is, It is immaterial whether forwards or backwards

orientation of the line Is used.

First note that xt - xj and !(xt+xj) are independent, and hence
21

that conditioning on the direction a :k of xi - xj does not

influence !(xt+xj). The repulsion vector u(xtxj; 0) has direction

a or a + T. Since (xixj) and its negative are equi-probable, the

contribution to E(u(x,,xj; 0)) from all (XjXj) is zero apart from

those (xixj) for which u(xixj; 0) = u(-xt,-xj; 0). Projecting onto

the direction a of the vector u, this condition means that the
1

projection of 0 cannot lie between those of the mid-points !(xi+xj)'

1 
2 

o
- §(X I xj of chords joining (xi.x) and (-xi.-xj) That Is,



0~~ 1( {(4x)- (X+X) - foa

2 1e 161nJI

so the only xj.X j making non-zero contribution to E~u(x1 .x J. 0))

satisfy

r "r *'* (7)

Recall that conditional on the direction a. i.e. on

(X1 -x) (J:] = 0

5(xj+xj) at N(0,41 2) so for small 101. the probability of (7) is

2 I O/1 Tco l ] + 0( 161)( )

The vector u(xix: 6) bas umagnitude lxi-x iI and is in the

direction (cosa, sina1)T with sign as yet unspecified. To get the

sign. project both 0 and the chord mid-point 1(x +X) on to the

direction a, and note that u points away from the chord towards 69. by

definition, so that

u(xiOxj;6 Ix -x~ I (cosa sgn[(e - 1(x +X~ ))T .~

However, for (xjx) obeying (7), the sign factor = sgn[(cosa~sina)O).

Since E{Ix I-x 1I) = 2w11/2, combining with (8) gives the corresponding

contribution to E{Q(S)) of



201.4: rTccoua + 01).

2 r 0 0 *:s~ coa 1 l +1111 o e).
; lc s sinc sinea j

Now a Is a uniform angle. with E(cos2 a) - =E(sin2a),

E(coua siniz) a 0. so finally

aG 2 2 +o(I61). and

D n(-U)1  (9)

PROPOSITION~ 2. B S3 1 2 + O(n0).

Proof. Referring to (5). a typical term of C is proportional to

u(x J, -X ; -xi)u T(xk.-xk; ..xi) + u(xk.-k; ..xi)uT(xj .-x j; -xi).

T I 1
Let x I = r,{cos(a I+z~v). sin(a,+ir)). By the independence of

(r,). (a,). the expectation of such a typical term, given x J9xk. is

4rjk[((ci~sk 3)s 29s+Cs) (1 VIjcz

where (c I.si) = (cosa,. sirxz1). and where in the last term, the factor

Iaj-ak IIs the shortest absolute rotation between ajand a.and thus

C (0.vJ. This factor arises from considering the possible positions

of x I in the four sectors defined by chords (x J, -x and (xk.-xk). an

the corresponding signs of repulsion vectors u.
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But cic i ~cos(czj~ak) + con(aj-cx)}. cjsk + Cksj = sin(cxj+ak).
nd J c a 1 2n r
and a i{cos~aj-ak) - cos(czjlak)). Now a + ada a r

Independenit and each Is distributed as U(-u~w). with cos and sin of

a aihaving mean zero. so averaging over aa reduces (10) to

4 r r~ E [cos(a -a )j '] {) 1 - la,-ajI)].

1/2Since E(r) E(r k) =(2/v) ,the final result is:

B-T (n1 n2 32 +

16 n 2 '2 +12 1)

n3
= 12 + o(n*)(1)

Efficienciy of the OS test compared to least sauares

Applying the formula (6) with (9) and (11) gives

ecs ~-+ o(n),

and since eLS = n, the required efficiency is

efficiency (OS:LS) = T= .785.

This efficiency is greater than 2/T = .637. the normal efficiency

of the univariate sign test, and the result agrees with the estimation

efficiency of the Oja median for bivariate normal data; see Oja and

Niinia (1985)
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It is also possible to calculate the normal efficiency of the OS

test relative to the componentwise sign test. a non-affine invariant

test whose components are sign test statistics In the two co-ordinate

directions. Consider bivariate normal data with covariance matrix

A 2 . [1 P

Then if X is N(O.I2). Z - AX Is N(O,A 2 ). But by affine invariance.

eOS(A) - eOS(12).

Letting S be the vector of sign test statistics based on

components of Z,

a z Ee(S) = n 1-21(01)

= -n W2 / 2 + o(lel).

so that D = -n (2/,) 1/ 2 I 2." Also. at 9 = 0

coy(S) a n ( I 2-larsin(p) - B.2w'larsin (p) 1

The resulting expression for DTB-D has unequal eigenvalues

2w-ln (I i 2n-larsin p)-I and the efficiency factor eS for the

componentwise sign test lies between these two values. The range of

the resulting relative efficiencies Is

efficiency (OS:S) = eos/e S = 2 (1 * 2w1 arsin (p))

with the actual efficiency depending on the direction of the

alternative, as might be expected from the non-affine invariant nature

of the S test. The median of these efficiencies is ,2/8 = 1.234,

indicating that the OS test is generally more efficient than the

componentwise sign test.
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8. NBiEI1M

It is convenient to describe robustness of the OS test in terms

of a blvariate analogue of IHmpel's (1974) influence function. The

latter, though usually defined as a von-Mises derivative of certain

functionals. can also be specified for tests, in the context of

asymptotic theory. in the following way. covering both bivariate and

univariate cases.

Let T be a normlized test statistic based on a large number n of

observations, whose null distribution is standard normal. Suppose

sampling is from a distribution contaminated at a fixed point x, that

is with probability 1-e. sampling is from the hypothesized parent

distribution, but with probability e. an observation is x. If

contamination is O(n- 1 / 2 ), i.e. a = cn- 1 / 2 for some c ) 0. then

typically the asymptotic variance or covariance matrix of T is

unaffected, but the null mean -* cf as n -, m. The vector 0 = 0(x) is

the influence due to contamination at x; its presence imposes a bias

on the asymptotic null distribution and a distortion of test levels.

To evaluate 07 for the OS test. the null mean and covartance

matrix of Q(O) under O(n- 1/ 2 ) contamination are required; as before

assume the parent distribution to be N(O. 12).

It is easy to see that covariance is unaffected asymptotically,

and that as previously calculated

cov{Q(O)) = B o 12 (12).

To evaluate E(Q(O)). use the form (4); then

E(Q(O)) a in(n-l) E(pa).
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where if x is a typical observed vector. lal - Ix I and a is

perpendicular to x. pointing into the half plane P+. and if p .p_ are

probabilities of other observations in P .P. then p a p -p_. If x

is from the contaminant x. then p = 0 but if xj is from N(0. 12). then

p = a if x E P+. but p =-e if x P-. Averaging over x positions.

using the iep-dnce of orthogonal components of N(O. 12) and the

fact that expected absolute value of N(O.1) is (2/v)1/2 yields

E(Q(O)) - 1 n(n-1) &(1-e) (2/) 1/2 ux

where ux is a unit vector in the direction of x.

Now let a - cn 1 2 and calculate the mean of the normalized

statistic B 1'/2Q(O). i.e.

-71/2 1 -1/2 -/ /
B-  n(n-1) cn (1-cn -1/2 ) (2/v) 1/2 ux

which from (12) approaches 2-1/2 Tc ux as n-. Thus for the OS

test, the influence function is
2-1/2

O(x)a 27 uX

In depending only on the direction and not magnitude of the

contamlant position x. this is analogous to influence for the

univariate median. The factor 2- 1/2 is attributable to the normal

parent distribution. In having bounded influence, the OS test has

high robustness.

Another bivariate sign test analogue, though not affine

invariant, is the angle test, corresponding to the spatial median (see

Brown. 1983). Similar but easier calculations show the standard

normal influence function for angle tests to be

1(x) - 1/2 ux ,
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which is also bounded. and median-analogous, with a smaller constant

21/2. The larger constant 2 lI/2t for the OS test can be seen as a

modest price to pay for the Important property of affine invariance.

Other influence functions which are readily calculated are

D(x) = x for Hotelling's test based on the bivartate sample mean. and

therefore of unbounded influence as expected, and for the

componentwise sign test. where the test vector has univartate sign
21/2u* w

tests as components, 0(x) = 2/ . where u* is a unit vector

splitting the quadrant containing x. Thus the latter test. which is

not affine Invariant, also has bounded Influence.
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